What Is Practical Byzantine Fault Tolerance (pBFT ...

CoinEx Token Rating Report by TokenInsight

CoinEx Token Rating Report by TokenInsight
Written by TokenInsight
Published by tokenin.cn

EXECUTIVE SUMMARY

Advantages

  1. The team’s overall technical background is good, and the CTO and CEO of the project have rich experience in related industries;
  2. The current business scope of CoinEx has been expanded, and the development of the public chain has a decisive role in promoting the development of the exchange business;
  3. The project operation information is transparent, and the development process is consistent with the road map;
  4. The unlocking schedule is clear, and the token held by the team will be unlocked continuously in the next five years;
  5. The project uses POS consensus mechanism. At present, it has been launched on the main network, and the block time is stable, between 2–3 seconds.

Challenges

  1. It is not clear enough yet whether the trichain operation planning can achieve the project’s development goals;
  2. There is limited information on implementation details about cross-chain and other related technologies, and the development status needs to be assessed based on the later project development disclosure information;
  3. The team currently hold a large share of the token, hence the distribution of tokens is relatively concentrated;
  4. There are few application scenarios for project tokens, and more ecosystem scenarios need to be developed;
  5. As a deflationary token, CET needs to be balanced by dealing with the contradiction between public chain users and token holders.

Outlook

The development of CoinEx Chain contributes to the future development of CoinEx’s centralized and decentralized exchanges; the concept of trichain operation simplifies the functions of each chain, improving their performance. At present, there are few exchanges working on the public chain, and no fierce competition has occurred.

Conclusion

Considering the status and development prospects of the project, TokenInsight gives CoinEx a rating of BB with a stable outlook.

1. Multidimensional evaluation


2. Project analysis

CoinEx (CoinEx Technology Limited) was established in December 2017 and is headquartered in Hong Kong, China. It is a sub-brand of the ViaBTC mining pool. At present, CoinEx’s business scope includes CoinEx exchange, CoinEx public chain, and CoinEx decentralized exchange. The current development focus of the CoinEx platform are public chain and exchange. The main purpose of the public chain is to build a decentralized exchange (DEX) infrastructure and an ecosystem around DEX.

CoinEx business structure,Source: CoinEx; TokenInsight

2.1 Introduction

“ CoinEx Chain uses the parallel operation of three chains which are DEX, Smart, and Privacy, as well as cross-chain technologies to create a rich decentralized exchange ecosystem and blockchain financial infrastructure.
The core of CoinEx’s early business was the exchange, consisted of two major categories which were spot and derivatives trading. Currently, there are 123 trading currencies online, covering 302 trading pairs. On June 28, 2019, CoinEx released the CoinEx Chain public chain white paper, aiming to build a decentralized trading system (CoinEx DEX) with community-based operations and transparent transaction rules, and providing user-controlled asset trading scenario by the highest technical standards in the industry; CoinEx Chain has become another development focus of CoinEx. CoinEx Token (CET), which was originally a native token of the CoinEx exchange, will also be developed mainly as a built-in token of the public chain.
CoinEx Chain is a public chain based on the Tendermint consensus protocol and Cosmos SDK, and it uses POS mechanism. CoinEx Chain plans to support 42 nodes when the project starts, and any entity in the ecosystem can participate in the validator’s campaign by staking CET. CoinEx Chain will use the new block reward and the transaction fee contained in the block as the reward for running the node.
CoinEx Chain has developed three public chains with different positioning and different functions in order to meet the needs of blockchain transactions for transaction performance, smart contracts, and privacy protection at the same time. They operate in parallel and collaborate with each other through cross-chain technology. At present, the block time of the public chain is between 2–3 seconds. According to the observation of TokenInsight, the block time is stable, but the number of transactions through the CoinEx public chain is still low at present, the number of transactions in 24 hours is about 30,000; The TPS on public chain disclosed by CoinEx can reach up to 1500 per second.
CoinEx Chain uses a trichain parallel model to build a more vibrant ecosystem around DEX. The three chains are DEX public chain, Smart public chain, and Privacy public chain, respectively responsible for decentralized transactions, smart contracts, and on-chain privacy protection.
CETs that need to participate in complex financial contracts can be transferred to the Smart public chain through the DEX public chain, then moved back to the DEX public chain after that. CET tokens that need to participate in token confusion can also be carried out through the privacy transaction of the Privacy public chain, and can eventually be returned to the DEX public chain. The three public chains are responsible for their respective duties, and they are interconnected through the cross-chain technology through the relay mechanism. In addition to ensuring their respective transaction processing speed and functional attributes, they can also jointly provide richer and safer functions, and synergistically constitute the CoinEx decentralized public chain ecosystem.
In addition, CoinEx Chain also supports any participant to issue new tokens on the chain and create new trading pairs for the issued tokens. CoinEx Chain guarantees the circulation of new tokens by establishing a trading pair between the new token and CET.

2.2 Component architecture

“ Tendermint Core and Cosmos SDK have improved the performance and operation capability of the blockchain. The SDK packaging reduces the consideration of non-related logic, hence reducing the development complexity.
CoinEx Chain is based on Tendermint Core and Cosmos SDK, both of which have brought a big boost to the development of CoinEx public chain performance. Cosmos-SDK will implement the application logic of the blockchain. Together with the Tendermint consensus engine, it implements the three-layer architecture of the CoinEx public chain: the application layer, the consensus layer, and the network layer.
Tendermint
Tendermint is based on the state machine replication technology and is suitable for blockchain ledger storage. It is a list of transactions making consensus with Byzantine fault tolerance, the transactions are executed in the same order, and eventually the same state is obtained. Tendermint can be used to build various distributed applications.
Cosmos SDK
Cosmos-SDK is a blockchain framework that supports the construction of multiple assets with a consensus mechanism of POS (Proof of Stake) or POA (Proof of Authority). The goal of the Cosmos SDK is to allow developers to easily build custom blockchains from 0, while enabling the interaction with other blockchains.
Cosmos-SDK is a blockchain framework that supports the construction of multiple assets with a consensus mechanism of POS (Proof of Stake) or POA (Proof of Authority). The goal of the Cosmos SDK is to allow developers to easily build custom blockchains from 0, while enabling the interaction with other blockchains. The blockchain development framework Cosmos SDK implements general functions such as account management, community governance, and staking in a modular form. Therefore, using the Cosmos SDK to build a public chain can simplify development procedures and facilitate operation. Tendermint is a fixed protocol in a partially synchronized environment, which can achieve throughput within a delay range of the network and each process itself. The CoinEx public chain is developed based on both, improving the performance and operability of the blockchain. The SDK packaging further reduces considerations of non-related logic and reduces the complexity of developers creating. The two components of Tendermint and Cosmos SDK are connected and interacted through the Application Blockchain Interface.
Cosmos SDK and Tendermint interworking structure,Source:CoinEx; TokenInsight

2.3 Project public chain planning

The development plan of the CoinEx public chain is to create a series of public chains with specific application directions, including:
  1. DEX public chain: solve the problems of lack of security and opacity that are widely criticized by centralized exchanges at present; aim to build a transparent, safe, and permission-free financial platform; restore the experience of central exchanges to the greatest extent;
  2. Smart public chain: a public chain that specifically supports smart contracts and provides a platform for building complex financial applications;
  3. Privacy public chain: mainly provides transaction amount, account balance, and information protection and the hiding of both parties to the transaction.
In order to achieve the performance of each specific application public chain, each public chain in the CoinEx public chain focuses on the development of a certain function. For example, in order to improve the transaction processing speed of the DEX public chain, the DEX public chain only supports the necessary functions and does not support smart contracts. To achieve the smart contract function support, cross-chain connection between the DEX public chain and the Smart public chain is required.

2.4 Operation analysis

“ The CoinEx platform publishes monthly ecosystem reports with high transparency; but the monthly reports are limited to contents about transactions and development, and lack progress in ecosystem and community construction, making them relatively simple.
2.4.1 Disclosure of ecosystem information
Operational risks have a direct impact on platform users. Whether platform operations are smooth and whether there is transparency are issues that platform users care about.
The CoinEx platform was established in 2017 and has around 3 years of development. It is also one of the platforms that has been developing for a long time in the exchange industry. It has obtained a digital currency trading license issued by the Estonian Financial Intelligence Unit (FIU), and the platform’s compliance is guaranteed to some degree.
The actual operation of the CoinEx platform will be displayed in the form of ecosystem monthly reports. The monthly report contains various types of content such as online currencies, new activities, plans for the next month, and ecosystem dynamics. It involves multiple business dimensions including the CoinEx exchange, CoinEx Public Chain, and CET token.

https://preview.redd.it/4mt0999ere551.png?width=631&format=png&auto=webp&s=cba27a7c90275f4c033bdd2445a72e6f294265e8
Snippet of a CoinEx ecosystem monthly report,Source: CoinEx; TokenInsight
2.4.2 Roadmap
CoinEx Chain released its development roadmap for the four quarters of 2020 in January 2020. The roadmap shows that CoinEx Chain will undergo major updates on smart contracts and DEX hard fork upgrades. The project roadmap is basically planned on a monthly basis, with a clear plan and a clear direction of development.
CoinEx Public Chain 2020 Development Roadmap,Source: CoinEx; TokenInsight
In addition to the development route planned in the roadmap, CoinEx public chain also discloses its goals for next month in its monthly ecological report. The project’s main net was launched online in November 2019. According to TokenInsight’s review of the development of CoinEx public chain from January to April and the disclosure of the project’s ecosystem monthly report, the project’s plan about development of the smart contract Demo in February failed to be completed as planned; the project completed launching of the new version of the blockchain browser and the Asian Atlantis upgrade; the smart contract virtual machine development was planned to be completed in April, but the progress related to supporting cross-chain agreements was not disclosed yet.
Overall, the project’s development route planning is clear, and the project’s development schedule is consistent with the plan, but there are still some discrepancies. Operation and development information is disclosed every month, and information transparency is high.

3. Industry & Competitors

The earliest origin of the exchange layout in the public chain field began in early 2018 when Binance released an announcement to start the development of the Binance Public Chain officially. In June of the same year, Huobi announced at its brand upgrade conference that it will combine the technical capabilities of the Huobi technical team and the community developers to develop the Huobi public chain called “Huobi Chain”. In December of the same year, OK Group announced the launch of its self-developed public chain OKchain, dedicating to provide underlying technical support and services for startups stationed in B-Labs.
The successful launch of the public chain brings huge strategic significance to the exchange, which can not only improve the performance of the existing business of the exchange but also achieve further expansion of its influence. As one of the most important blockchain infrastructures, the public chain can benefit the exchanges behind it.
As a platform for developing public chain technology exchanges, CoinEx’s main competitors in the field of public chain development include Binance, Huobi, and OKEx. Although they are all exchange platforms for deploying public chains, the above four are different in terms of specific functions, economic models, and critical points of the public chain.

3.1 Development progress comparison

In 2019, Binance became the first exchange to launch a public chain among all digital asset exchanges, and its main product is Binance exchange (DEX). In April 2020, Binance announced the launch of a second smart contract chain, using Ethereum’s virtual machine, so that developers can build decentralized applications without affecting the performance and functionality of their original chain.
OKEx launched OKChain’s testnet in February 2020 and completed open source two months later. OKChain is designed as the basis of large-scale blockchain-driven business applications, with the characteristics of source code decentralization, point-to-point, irreversibility, and efficient autonomy.
Huobi released Huobi Chain for the first time in July 2019, the code is open source, and the testnet was released in February 2020. As a “regulator-friendly financial blockchain”, Huobi Chain focuses on providing compliance services for companies and financial institutions.
The CoinEx public chain officially completed the main online launch in November 2019 and completed the new block browser’s launch in March 2020. On April 3, 2020, CoinEx DEX uploaded the underlying code to Github to achieve open source. The CoinEx public chain is more inclined to build a full DEX ecosystem to achieve a one-stop solution for issuing, listing, storing, and trading. The long-term goal is to create a blockchain financial infrastructure.

3.2 Comparison of economic models

At present, the exchange is more inclined to use its existing platform currency as the native token of the public chain in the construction of public chain ecology. CoinEx’s CET, Binance’s BNB, and Huobi’s HT all fall into this category. OKEx is the only exchange that issues new tokens for its OKChain, which means OKT is the only ‘inflation token’ in the exchange’s public chain, while CET, HT, and BNB are all deflationary.

3.3 Decentralization of public chain

The initial number of CoinEx public chain verification nodes is 42, which is currently the most decentralized among all exchange public chains, and able to take both efficiency and decentralization into account; OKChain also currently has a relatively high degree of decentralization in the exchange public chain (21 verification nodes), its nodes have a high degree of autonomy; by contrast, Binance still firmly controls the operation of nodes and transactions; In terms of encourages cooperation between regulators and the private financial aspects, Huobi provides a lesser degree of decentralization. Huobi Chain uses a variant of the DPoS consensus algorithm to provide functions such as “supervision nodes”, allowing regulators to become validators.
Comparison of some dimensions of CoinEx, Huobi, Binance and OKEx public chain,Source: TokenInsight

4. Token Economy

CoinEx Token (CET) is a native token of the CoinEx ecosystem. It was issued in January 2018. Token holders can enjoy some user value-added services within the ecosystem. Currently, it is mainly used as a native token on the CoinEx Chain. As of 11 am on April 23, 2020, the current circulation of CET tokens in the market is 3,215,354,906.31, with a total of 5,842,177,609.53. CET tokens will not be further issued or inflated. Currently, daily repurchase and quarterly destruction are carried out. The repurchase destruction dynamics can now be tracked real-time on the CET repurchase system on the platform.

4.1 Token Distribution

The CET token used to be based on the ERC-20 token developed by Ethereum. Since the CoinEx Chain mainnet was launched in November 2019, some ERC-20 CET tokens have been mapped to the mainnet CET, and the rest of the CET will be mapped before November 10, 2020. CET holders need to deposit ERC-20 CET to the COinEX exchange, and the exchange will conduct the main network mapping.
At present, CET is mainly circulated in the form of mainnet tokens, and only a small portion of ERC-20 CET has not been mapped. The distribution of token holdings currently circulating on the mainnet can be seen in the figure below. At present, the number of tokens held by the top ten holders accounts for about 60.44% of all mainnet CET tokens.
Distribution of CET token holding addresses,Source: Etherscan; TokenInsight
The following figure shows the initial distribution of tokens after the mainnet mapping preset by CoinEx. From the initial distribution map of CET, it shows that, after mapping, a large portion of CET remains concentrated in the hands of the team (31%), and the actual number of CET circulating in the market only accounts for 49% of the total.
The initial distribution of CET token,Source: CoinEx; TokenInsight
After the main net mapping, the 31% of the total CET (1.8 billion) held by the team will be gradually unlocked in the five years from 2020 to 2024, and 360 million CET will be unlocked each year. By 2024, the CET held by the team will be completely unlocked. From the current CET dynamics, the CET share held by some teams has been used for destruction purposes to achieve the purpose of CET austerity. If the frozen 1.8 billion CET held by the team are used for similar purposes, the development of CET and its platform can benefit from it.
Team’s CET unlocking plan,Source: CoinEx; TokenInsight

4.2 Token economic model

4.2.1 Deflation mechanism
Since the CET token went online in January 2018, CoinEx has increased the circulation of CET through airdrops, transaction fee refunds, operation promotion, and team unlocking. As one of the existing platform coins with long development time, the deflation mechanism of CET token has undergone a series of changes with the development of the industry. In 2018, when the concept of coin-based mining prevailed, CET used transaction mining, stake mining, and pending order mining, which were cancelled in October, December and, April respectively of the following year.
The repurchase and destruction model currently used by CET was updated by CoinEx on April 11, 2020. The original CET quarterly repurchase and destruction policy of the platform will be adjusted to daily repurchase and quarterly destruction. After the implementation of the daily repurchase policy, CoinEx will take out 50% of the daily fee income for CET repurchase in the secondary market and implement quarterly destruction until the total remaining circulation is 3 billion (currently about 5.8 billion).
At the same time that CoinEx updated the repurchase and destruction plan on April 11, the platform also launched a page dedicated to displaying CET repurchase information, so that users can clearly understand the progress of CET repurchase and destruction.
As of April 23, 2020, the platform has destroyed 4,157,822,390.46 CET tokens, accounting for 41.6% of the initial total issuance. At the end of January 2019, it had destroyed 4 billion CETs (single destruction volume peak) at the end of this quarter. The number of CETs to be destroyed is 3,422,983.56.
CET historical destruction data,Source: CoinEx; TokenInsight
4.2.2 Application scenarios
The current usage scenarios of CET are discounted platform transaction fees, VIP services, special activities rights and interests, CoinEx Chain internal circulation fuel, and use of external scenarios.
Deduction and discount of platform transaction fees
CoinEx platform users can use CET to deduct transaction fees when conducting transactions within the platform. At the same time, using CET to pay transaction fees can enjoy the exclusive preferential rates provided by the platform.
CET fee discount amount,Source:CoinEx; TokenInsight
VIP service
Holding a certain number of CETs can make a user become a platform VIP user. Users can also use CET to purchase platform VIPs to obtain corresponding privileges such as discounted rates, accelerated withdrawals, and exclusive customers.
Special activity rights
CET holders can enjoy special rights and interests in platform marketing activities, such as participating in the airdrop of tokens on the platform or accelerating opportunities for high-quality projects.
CoinEx Chain built-in token
CET will serve as a native token of CoinEx Chain, circulate and serve as fuel in CoinEx Chain, and users can also use CET to invest or trade other digital assets. In addition, CET can also serve as transaction fees and function fees (issuing Token, creating new trading pairs, account activation), etc. in the platform, and users can also participate in the campaign of validators by staking CET tokens.
CET is currently used as a circulation token as well for CoinEx DEX to issue tokens, create orders, Bancor, address activation, set address aliases, and other application scenarios.
In general, the types of application scenarios of CET are not plenty enough. In order to better develop the internal ecosystem of the platform, it is necessary to design and develop more CET usage scenarios and incentive mechanisms to increase the retention rate of users while adding new users.
4.2.3 Token incentive
As the native token of the CoinEx public chain, CET will be used as a block incentive to increase community participation after the mainnet of the public chain launched. The 315 million CET held by the foundation in the total CET issuance will be used to incentivize initial verification nodes and Staking participants.
CET annual incentive information,Source:CoinEx; TokenInsight

5. Team & Partners

5.1 Core team members

Among the core team members of CoinEx, the technical members account for a relatively large proportion. The technical team’s overall ability is good and the team members have different technical experience backgrounds including cryptography, underlying protocols, marketing, and operations. The team has rich blockchain industry experience, especially the chief developer, who has about 13 years of development industry experience.

https://preview.redd.it/kd0z9q0ese551.png?width=785&format=png&auto=webp&s=7beff33e522165202f6a0b75dba70f32630d8656
https://preview.redd.it/s2klsatese551.png?width=1024&format=png&auto=webp&s=57f03219007d853d754883e2e07cd5eb2c8ed17d
https://preview.redd.it/kuyspmkfse551.png?width=978&format=png&auto=webp&s=fd9c808107d245047f7c74ef34fcf6a02965152c

5.2 Investment institutions and partners

CoinEx’s investment is led by Bitmain and its main partners include Matrixport, Bitcoin.com, CoinBull, Consensus Lab, BTC.com, BTC.top, Hoo Exchange, Wa Yi, ChainFor.com, etc.
Investment institutions and major partners have rich experience in the industry, which can promote the development of projects to a certain extent. However, the current industry involved by the partners is not wide enough, and it will have a limited role in promoting the future of CoinEx’s enriching business lines and increasing ecosystem functions.
https://preview.redd.it/zjgzvv6ise551.png?width=533&format=png&auto=webp&s=a3f7fe3abb2c2d522e289213ae6fbc4e899825e0

6. Community Analysis

According to TokenInsight’s research of the CoinEx platform community, as of April 23, 2020, its official Twitter has 19,800 followers and 932 tweets; the official Telegram has 45 official groups, 3 in Chinese and English, and the other is Korean, Arabic, Vietnamese, Indian and other small language groups, with a total number of 56088 people; the current number of followers on Facebook accounts is 3,107. The overall community followers still have a lot of room for improvement, and community activeness needs to be improved.
Number of followers on the CoinEx social platform,Source:TokenInsight
At present, the project’s search popularity and official website visits are both top-notch, and monthly visits have slowly returned to their previous visit levels after experiencing a significant decline in December 2019.
CoinEx visit popularity,Source: TokenInsight, Similarweb, Google
At present, the visitors of the CoinEx website are distributed in multiple countries, and there are no visits concentration from a single country or region. Therefore, CoinEx’s comprehensive global influence is widely distributed and has a reasonable degree of internationalization.

CoinEx official website’s top 5 countries by number of visitors,Source: CoinEx, TokenInsight
Original article
Click here to register on CoinEx!
submitted by CoinExcom to btc [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One
This is part one of three articles where i will discuss what i have learnt whilst looking into Cosmos. I will provide links throughout the article to provide reference to sections as well as a list of sources at the bottom of the article for you to look into specific areas in more detail if required. Hopefully it will be useful for those interested in learning more about the project.
Cosmos is still very early in development process with components such as IBC which connects two blockchains together currently in research / specification stage, as a result can change by the time its released.

What is Cosmos?

Cosmos is a network and a framework for interoperability between blockchains. The zones are powered by Tendermint Core, which provides a high-performance, consistent, secure PBFT-like consensus engine, where strict fork-accountabilityguarantees hold over the behaviour of malicious actors. Cosmos is not a product but an ecosystem built on a set of modular, adaptable and interchangeable tools.
In Tendermint, consensus nodes go through a multi-round voting proposal process first before coming to consensus on the contents of a block. When 2/3 of those nodes decide on a block, then they run it through the state transition logic providing instant finality. In current proof of work consensus for Ethereum, the consensus process is inverted, where miners pick the transactions to include in a block, run state updates, then do “work” to try and mine the block.
Tendermint BFT can handle up to thousands of transactions per second (depending on the number of validators). However, this only takes into account the consensus part, the application layer is the limiting factor though. Ethermint (described below) has achieved up to 200 tps to give you an idea of the speed available per blockchain which is significantly more than current versions of Ethereum and Bitcoin etc.
The Tendermint consensus is used in a wide variety of projects, some of the most notable include Binance Chain, Hyperledger Burrow. It’s important to note though that just using Tendermint consensus doesn’t mean they can connect to other chains with the cosmos ecosystem, they would need to fork their code to implement IBC as a native protocol to allow interoperability through IBC.
see https://raw.githubusercontent.com/devcorn/hackatom/mastetminfo.pdf for high res

The Tendermint consensus algorithm follows a traditional approach which relies on all validators to communicate with one another to reach consensus. Because of the communication overhead, it does not scale to 1000s of validators like Bitcoin or Ethereum, which can have an unlimited number of validators. Tendermint works when there are 100s of validators. (Cosmos Hub currently has a maximum of 100 validators and the maximum tested so far with Tendermint is 180 validators)
Therefore, one of the downsides of a blockchain built using Tendermint is that, unlike Bitcoin or Ethereum, it requires the validators to be known ahead of time and doesn’t allow for miners to come and go as they please.Besides this, it also requires the system to maintain some notion of time, which is known to be a complex problem in theory. Although in practice, Tendermint has proven this can be done reasonably well if you use the timestamp aggregates of each node.
In this regard, one could argue that Tendermint consensus protocol is “less decentralized” than Bitcoin because there are fewer validators, and they must be known ahead of time.
Tendermint’s protocol guarantees safety and liveness, assuming more than 2/3 of the validators’ voting power is not Byzantine (i.e., malicious). In other words, if less than 1/3 of the network voting power is Byzantine, the protocol can guarantee safety and liveness (i.e., validators will never commit conflicting blocks at the same height and the blockchain continues to make progress).https://www.preethikasireddy.com/posts/how-does-cosmos-work-part1
To see the process of how Tendermint works please see this diagram as well as more info here

Sovereignty

Cosmos goal is to provide sovereignty through governance to developers by making it easy to build blockchains via the Cosmos SDK and provide interoperability between them, using Tendermint consensus. This is their main differentiator compared to competition like Polkadot and Ethereum 2.0. Ethereum 2.0 and Polkadot are taking a different approach by only using shared security, where there is a root chain which controls the security / prevents double spending for all connected blockchains.
In Hub governance all stakers vote, the validators vote is superseded if the delegator votes directly
Governance is where all stakers vote on proposals to determine what changes are implemented in the future for their own blockchain, stakers can either choose to delegate their vote to the validator or they can instead vote directly. Without sovereignty all DAPPs share the same underlying environment. If an application requires a new feature in the EVM it has to rely entirely on the governance of the Ethereum Platform to accept it for example. However, there are also tradeoffs to having sovereignty as each zone is going to need a way to incentivise others to validate / create blocks on the Zone by running Full Nodes. Whilst it may be easy to create a blockchain using the cosmos SDK and to mint a token, there are the legal costs / regulation associated with creating your own token. How are you going to distribute the tokens? How are you going to list them on exchanges? How are you going to incentivise others to use the token without being classed as a security? All of which have led to a significant reduction in the number of ICOs being done. With every zone needing their own validator set, there’s going to be a huge number of validators required each trying to persuade them to validate their zone with only a finite number of validators available.
Each Zone / App is essentially a mini DAO and not all are going to be comfortable about having their project progress been taken out of their hands and instead relying on the community to best decide on the future (unless they control 2/3 of the tokens). The Cosmos Hub has proved this can be successful, but others may be risk averse to having their application be a mini DAO. Should someone / competitor acquire 1/3 of the tokens of a zone then they could potentially prevent any further progress being made by rejecting all governance votes (this would be very costly to do on the Cosmos Hub due to its high amount staked, but for all the other less secure zones this potentially may be an issue).
Security for some zones will likely be a lot lower with every developer needing to validate their own blockchain and tokenise them with POS with no easy way to validate the setup of a validator to ensure its secure. Whilst the Cosmos hub is very secure with its current value staked, how secure zone’s will be with significantly less staked remains to be seen. Whilst providing soverignty was Cosmos’s main goal from the start, they are also looking at being able to provide shared security by having validators of a connected Hub also validate /create new blocks on the connected zone’s blockchain for them as well. They are still going to need some way to incentivise the validators to this. Another option is if the developers didn’t want to create a token, nor want sovereignty etc, then they could just build a DAPP on the EVM on a zone such as Ethermint.
As can be seen their are potential advantages and disadvantages to each method, but rather than forcing shared security like Ethereum and Polkadot, Cosmos is giving the developer the choice so will be interesting to see which they prefer to go for.

Layers of a blockchain

From an architecture standpoint, each blockchain can be divided into three conceptual layers:
  • Application: Responsible for updating the state given a set of transactions, i.e. processing transactions.
  • Networking: Responsible for the propagation of transactions and consensus-related messages.
  • Consensus: Enables nodes to agree on the current state of the system.
The state machine is the same as the application layer. It defines the state of the application and the state-transition functions. The other layers are responsible for replicating the state machine on all the nodes that connect to the network.
The Cosmos SDK is a generalized framework that simplifies the process of building secure blockchain applications on top of Tendermint BFT. The goal of the Cosmos SDK is to create an ecosystem of modules that allows developers to easily spin up application-specific blockchains without having to code each bit of functionality of their application from scratch. Anyone can create a module for the Cosmos SDK and using ready built modules in your blockchain is as simple as importing them into your application.
The Tendermint BFT engine is connected to the application by a socket protocol called the Application Blockchain Interface (ABCI). This protocol can be wrapped in any programming language, making it possible for developers to choose a language that fits their needs.

https://preview.redd.it/5vpheheqmba31.png?width=770&format=png&auto=webp&s=ec3c58fb7fafe10a512dbb131ecef6e841e6721c

Hub and Spoke Topology

Cosmos follows a hub and spoke topology as its not feasible to connect every zone together. If you were to connect every blockchain together the number of connections in the network would grow quadratically with the number of zones. So, if there are 100 zones in the network then that would equal 4950 connections.
Zones are regular heterogenous blockchains and Hubs are blockchains specifically designed to connect Zones together. When a Zone creates an IBC connection with a Hub, it can automatically access (i.e. send to and receive from) every other Zone that is connected to it. As a result, each Zone only needs to establish a limited number of connections with a restricted set of Hubs. Hubs also prevent double spending among Zones. This means that when a Zone receives a token from a Hub, it only needs to trust the origin Zone of this token and each of the Hubs in its path. Hubs do not verify or execute transactions committed on other zones, so it is the responsibility of users to send tokens to zones that they trust.
There will be many Hubs within Cosmos network the first Hub to launch was the Cosmos Hub whose native staking token is called ATOM. ATOM tokens are specific to just the Cosmos Hub which is one hub of many, each with their own token. Transaction fees for the Cosmos Hub will be payable in multiple tokens so not just ATOMs whereas other Hubs such as IRIS has made it so that all transaction fees are paid in IRIS for transactions on its hub.
As mentioned, the Cosmos Hub is one of many hubs in the network and currently has a staking ratio of around 70% with its token ATOM having a market cap of just over $800 million. IRISnet was the second Hub to launch which currently has around 28% bonded with its token IRIS which has a market cap of just under $17 million. The Third Hub about to be launched later this month has its token SENT which has a market cap of around $3.4 million. As you can see the security of these 3 hubs differ wildly and as more and more hubs and then zones are brought online there is going to need to be a lot of tokens / incentivisation for validators.
Ethermint
Standard Cosmos zones / hubs don’t have smart contract functionality and so to enable this, as the Application layer is abstracted from the consensus layer via ABCI API described earlier, it allows Cosmos to port the code over from other blockchains such as Ethereum and use it with the Tendermint Consensus to provide access to the Ethereum Virtual Machine. This is what is called Ethermint.
This allows developers to connect their zones to specialised zones such as Ethermint to build and run smart contracts based on Solidity, whilst benefiting from the faster performance of the tendermint Conensus over the existing POW implementation currently. Whereas a normal Go Ethereum process runs at ~12.5 transactions per second (TPS), Ethermint caps out at 200 TPS. This is a comparison against existing Ethereum speeds, whilst obviously Ethereum are working on their own scaling solutions with Ethereum 2.0 which will likely be ready around the same time. Existing tools / dapps used on ethereum should easily be able to be ported over to Ethermint by the developer if required.
In addition to vertical scaling (with the increase in tps by using Tendermint consensus), it can also have multiple parallel chains running the same application and operated by a common validator set. So if 1 Ethermint zone caps out at 200 TPS then 4 Ethermint zones running in parallel would theoretically cap out at 800 TPS for example.

https://preview.redd.it/e2pghr9smba31.png?width=554&format=png&auto=webp&s=a6e472a6e4a0f3845b03c36caef8b42d77125e46
There is a huge number of developers / apps currently built on Ethereum, should a developer choose to migrate their DAPP over to Ethermint they would lose native compatibility with those on Ethereum (except through Peg Zone), but would gain compatibility with those running on Ethermint and others in the cosmos ecosystem.
You can find out more about Ethermint here and here

IBC

IBC stands for inter-blockchain communication protocol and is an end-to-end, connection-oriented, stateful protocol for reliable, ordered, authenticated communication between modules on separate distributed ledgers. Ledgers hosting IBC must provide a certain set of functions for consensus transcript verification and cryptographic commitment proof generation, and IBC packet relayers (off-chain processes) are expected to have access to network protocols and physical datalinks as required to read the state of one ledger and submit data to another.
In the IBC architecture, modules are not directly sending messages to each other over networking infrastructure, but rather creating messages to be sent which are then physically relayed via “Relayers”. “Relayers” run off-chain and continuously scan the state of each ledger via a light client connected to each of the 2 chains and can also execute transactions on another ledger when outgoing datagrams have been committed. For correct operation and progress in a connection between two ledgers, IBC requires only that at least one correct and live relayer process exists which can relay between the ledgers. Relays will need to be incentivised to perform this task (the method to which hasn’t been established as of this writing)
The relay process must have access to accounts on both chains with sufficient balance to pay for transaction fees. Relayers may employ application-level methods to recoup these fees, such by including a small payment to themselves in the packet data. More information on Relayers can be found here

https://preview.redd.it/qr4k6cxtmba31.png?width=1100&format=png&auto=webp&s=d79871767ced4bcb0b2632cc137c118f70c3863a
A high-level overview of the process is that Zone 1 commits an outbound message on its blockchan about sending say 1 x Token A to Hub1 and puts 1 x Token A in escrow. Consensus is reached in Zone 1, and then it’s passed to the IBC module to create a packet which contains the reference to the committed block, source and destination channel/ connection and timeout details and is added to Zone 1’s outbound queue as proof.
All relayers (who run off-chain) are continuously monitoring the state of Zone 1 via the Zone 1 light client. A Relayer such as Relayer 1 is chosen and submits a proof to Hub1 that Zone 1.
Hub 1 then sends a receipt as proof that it has received the message from Zone 1, relayer1 sends it to Zone 1. Zone 1 then removes it from its outbound queue and sends proof via another receipt to Hub1. Hub1 verifies the proof and mints the token.

https://preview.redd.it/qn7895rumba31.png?width=770&format=png&auto=webp&s=96d9d808b2284f87d45fa0bd7b8bff297c86c2da
This video below explains the process in more detail as well as covers some of the other points i raise later in this article so worth a watch (time stamped from 22:24 to 32:25) and also here from 38:53 to 42:50
https://youtu.be/5h8DXul4lH0?t=1344
Whilst there is an option for UDP style transfer where a zone will send a message to a Hub and it doesn’t care whether it gets there or in any order etc, Token transfers are going to require the TCP style connections in IBC where there is a send, receipt and then another receipt as explained above. Each Send, receipt followed by another receipt is going to take at least 2 blocks and so using Cosmos Hub block times as an example with 6.88 second block times a transfer between one zone and hub could take a minimum of 41.28 seconds. You also then have to factor in the amount of other transactions going through those at that time and relevant gas price to see whether it is able to use 2 consecutive blocks or whether it may take more. This is also explained in this video “ILP Summit 2019 | Cosmos and Interledger | Sunny Aggarwal” (time stamped) from to 12:50 to 15:45

In Part Two we will look at potential issues with multi hop routing, token transfers across multiple routes and Peg Zones, whilst also looking at other interoperability solutions that would resolve some of these issues and compliment the cosmos ecosystem. Part Two can be found here
submitted by xSeq22x to cosmosnetwork [link] [comments]

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One
This is part one of three articles where i will discuss what i have learnt whilst looking into Cosmos. I will provide links throughout the article to provide reference to sections as well as a list of sources at the bottom of the article for you to look into specific areas in more detail if required. Hopefully it will be useful for those interested in learning more about the project.
Cosmos is still very early in development process with components such as IBC which connects two blockchains together currently in research / specification stage, as a result can change by the time its released.

What is Cosmos?

Cosmos is a network and a framework for interoperability between blockchains. The zones are powered by Tendermint Core, which provides a high-performance, consistent, secure PBFT-like consensus engine, where strict fork-accountabilityguarantees hold over the behaviour of malicious actors. Cosmos is not a product but an ecosystem built on a set of modular, adaptable and interchangeable tools.
In Tendermint, consensus nodes go through a multi-round voting proposal process first before coming to consensus on the contents of a block. When 2/3 of those nodes decide on a block, then they run it through the state transition logic providing instant finality. In current proof of work consensus for Ethereum, the consensus process is inverted, where miners pick the transactions to include in a block, run state updates, then do “work” to try and mine the block.
Tendermint BFT can handle up to thousands of transactions per second (depending on the number of validators). However, this only takes into account the consensus part, the application layer is the limiting factor though. Ethermint (described below) has achieved up to 200 tps to give you an idea of the speed available per blockchain which is significantly more than current versions of Ethereum and Bitcoin etc.
The Tendermint consensus is used in a wide variety of projects, some of the most notable include Binance Chain, Hyperledger Burrow. It’s important to note though that just using Tendermint consensus doesn’t mean they can connect to other chains with the cosmos ecosystem, they would need to fork their code to implement IBC as a native protocol to allow interoperability through IBC.

see https://raw.githubusercontent.com/devcorn/hackatom/mastetminfo.pdf for high res

The Tendermint consensus algorithm follows a traditional approach which relies on all validators to communicate with one another to reach consensus. Because of the communication overhead, it does not scale to 1000s of validators like Bitcoin or Ethereum, which can have an unlimited number of validators. Tendermint works when there are 100s of validators. (Cosmos Hub currently has a maximum of 100 validators and the maximum tested so far with Tendermint is 180 validators)
Therefore, one of the downsides of a blockchain built using Tendermint is that, unlike Bitcoin or Ethereum, it requires the validators to be known ahead of time and doesn’t allow for miners to come and go as they please.Besides this, it also requires the system to maintain some notion of time, which is known to be a complex problem in theory. Although in practice, Tendermint has proven this can be done reasonably well if you use the timestamp aggregates of each node.
In this regard, one could argue that Tendermint consensus protocol is “less decentralized” than Bitcoin because there are fewer validators, and they must be known ahead of time.
Tendermint’s protocol guarantees safety and liveness, assuming more than 2/3 of the validators’ voting power is not Byzantine (i.e., malicious). In other words, if less than 1/3 of the network voting power is Byzantine, the protocol can guarantee safety and liveness (i.e., validators will never commit conflicting blocks at the same height and the blockchain continues to make progress).https://www.preethikasireddy.com/posts/how-does-cosmos-work-part1
To see the process of how Tendermint works please see this diagram as well as more info here

Sovereignty

Cosmos goal is to provide sovereignty through governance to developers by making it easy to build blockchains via the Cosmos SDK and provide interoperability between them, using Tendermint consensus. This is their main differentiator compared to competition like Polkadot and Ethereum 2.0. Ethereum 2.0 and Polkadot are taking a different approach by only using shared security, where there is a root chain which controls the security / prevents double spending for all connected blockchains.
Governance is where all stakers vote on proposals to determine what changes are implemented in the future for their own blockchain, stakers can either choose to delegate their vote to the validator or they can instead vote directly. Without sovereignty all DAPPs share the same underlying environment. If an application requires a new feature in the EVM it has to rely entirely on the governance of the Ethereum Platform to accept it for example. However, there are also tradeoffs to having sovereignty as each zone is going to need a way to incentivise others to validate / create blocks on the Zone by running Full Nodes. Whilst it may be easy to create a blockchain using the cosmos SDK and to mint a token, there are the legal costs / regulation associated with creating your own token. How are you going to distribute the tokens? How are you going to list them on exchanges? How are you going to incentivise others to use the token without being classed as a security? All of which have led to a significant reduction in the number of ICOs being done. With every zone needing their own validator set, there’s going to be a huge number of validators required each trying to persuade them to validate their zone with only a finite number of validators available.
Each Zone / App is essentially a mini DAO and not all are going to be comfortable about having their project progress been taken out of their hands and instead relying on the community to best decide on the future (unless they control 2/3 of the tokens). The Cosmos Hub has proved this can be successful, but others may be risk averse to having their application be a mini DAO. Should someone / competitor acquire 1/3 of the tokens of a zone then they could potentially prevent any further progress being made by rejecting all governance votes (this would be very costly to do on the Cosmos Hub due to its high amount staked, but for all the other less secure zones this potentially may be an issue).
Security for some zones will likely be a lot lower with every developer needing to validate their own blockchain and tokenise them with POS with no easy way to validate the setup of a validator to ensure its secure. Whilst the Cosmos hub is very secure with its current value staked, how secure zone’s will be with significantly less staked remains to be seen. Whilst providing soverignty was Cosmos’s main goal from the start, they are also looking at being able to provide shared security by having validators of a connected Hub also validate /create new blocks on the connected zone’s blockchain for them as well. They are still going to need some way to incentivise the validators to this. Another option is if the developers didn’t want to create a token, nor want sovereignty etc, then they could just build a DAPP on the EVM on a zone such as Ethermint.
As can be seen their are potential advantages and disadvantages to each method, but rather than forcing shared security like Ethereum and Polkadot, Cosmos is giving the developer the choice so will be interesting to see which they prefer to go for.

Layers of a blockchain

From an architecture standpoint, each blockchain can be divided into three conceptual layers:
  • Application: Responsible for updating the state given a set of transactions, i.e. processing transactions.
  • Networking: Responsible for the propagation of transactions and consensus-related messages.
  • Consensus: Enables nodes to agree on the current state of the system.
The state machine is the same as the application layer. It defines the state of the application and the state-transition functions. The other layers are responsible for replicating the state machine on all the nodes that connect to the network.
The Cosmos SDK is a generalized framework that simplifies the process of building secure blockchain applications on top of Tendermint BFT. The goal of the Cosmos SDK is to create an ecosystem of modules that allows developers to easily spin up application-specific blockchains without having to code each bit of functionality of their application from scratch. Anyone can create a module for the Cosmos SDK and using ready built modules in your blockchain is as simple as importing them into your application.
The Tendermint BFT engine is connected to the application by a socket protocol called the Application Blockchain Interface (ABCI). This protocol can be wrapped in any programming language, making it possible for developers to choose a language that fits their needs.

https://preview.redd.it/go1bgareiba31.png?width=770&format=png&auto=webp&s=c9a2c9faa9c99dd8c7a7b6925c7ea281e203eb47

Hub and Spoke Topology

Cosmos follows a hub and spoke topology as its not feasible to connect every zone together. If you were to connect every blockchain together the number of connections in the network would grow quadratically with the number of zones. So, if there are 100 zones in the network then that would equal 4950 connections.
Zones are regular heterogenous blockchains and Hubs are blockchains specifically designed to connect Zones together. When a Zone creates an IBC connection with a Hub, it can automatically access (i.e. send to and receive from) every other Zone that is connected to it. As a result, each Zone only needs to establish a limited number of connections with a restricted set of Hubs. Hubs also prevent double spending among Zones. This means that when a Zone receives a token from a Hub, it only needs to trust the origin Zone of this token and each of the Hubs in its path. Hubs do not verify or execute transactions committed on other zones, so it is the responsibility of users to send tokens to zones that they trust.
There will be many Hubs within Cosmos network the first Hub to launch was the Cosmos Hub whose native staking token is called ATOM. ATOM tokens are specific to just the Cosmos Hub which is one hub of many, each with their own token. Transaction fees for the Cosmos Hub will be payable in multiple tokens so not just ATOMs whereas other Hubs such as IRIS has made it so that all transaction fees are paid in IRIS for transactions on its hub.
As mentioned, the Cosmos Hub is one of many hubs in the network and currently has a staking ratio of around 70% with its token ATOM having a market cap of just over $800 million. IRISnet was the second Hub to launch which currently has around 28% bonded with its token IRIS which has a market cap of just under $17 million. The Third Hub about to be launched later this month has its token SENT which has a market cap of around $3.4 million. As you can see the security of these 3 hubs differ wildly and as more and more hubs and then zones are brought online there is going to need to be a lot of tokens / incentivisation for validators.

Ethermint

Standard Cosmos zones / hubs don’t have smart contract functionality and so to enable this, as the Application layer is abstracted from the consensus layer via ABCI API described earlier, it allows Cosmos to port the code over from other blockchains such as Ethereum and use it with the Tendermint Consensus to provide access to the Ethereum Virtual Machine. This is what is called Ethermint.
This allows developers to connect their zones to specialised zones such as Ethermint to build and run smart contracts based on Solidity, whilst benefiting from the faster performance of the tendermint Conensus over the existing POW implementation currently. Whereas a normal Go Ethereum process runs at ~12.5 transactions per second (TPS), Ethermint caps out at 200 TPS. This is a comparison against existing Ethereum speeds, whilst obviously Ethereum are working on their own scaling solutions with Ethereum 2.0 which will likely be ready around the same time. Existing tools / dapps used on ethereum should easily be able to be ported over to Ethermint by the developer if required.
In addition to vertical scaling (with the increase in tps by using Tendermint consensus), it can also have multiple parallel chains running the same application and operated by a common validator set. So if 1 Ethermint zone caps out at 200 TPS then 4 Ethermint zones running in parallel would theoretically cap out at 800 TPS for example.

https://preview.redd.it/oboyonufiba31.png?width=554&format=png&auto=webp&s=18560aa44596fc2357590b54ddb39fd8ee1c8783
There is a huge number of developers / apps currently built on Ethereum, should a developer choose to migrate their DAPP over to Ethermint they would lose native compatibility with those on Ethereum (except through Peg Zone), but would gain compatibility with those running on Ethermint and others in the cosmos ecosystem.
You can find out more about Ethermint here and here
IBC
IBC stands for inter-blockchain communication protocol and is an end-to-end, connection-oriented, stateful protocol for reliable, ordered, authenticated communication between modules on separate distributed ledgers. Ledgers hosting IBC must provide a certain set of functions for consensus transcript verification and cryptographic commitment proof generation, and IBC packet relayers (off-chain processes) are expected to have access to network protocols and physical datalinks as required to read the state of one ledger and submit data to another.
In the IBC architecture, modules are not directly sending messages to each other over networking infrastructure, but rather creating messages to be sent which are then physically relayed via “Relayers”. “Relayers” run off-chain and continuously scan the state of each ledger via a light client connected to each of the 2 chains and can also execute transactions on another ledger when outgoing datagrams have been committed. For correct operation and progress in a connection between two ledgers, IBC requires only that at least one correct and live relayer process exists which can relay between the ledgers. Relays will need to be incentivised to perform this task (the method to which hasn’t been established as of this writing)
The relay process must have access to accounts on both chains with sufficient balance to pay for transaction fees. Relayers may employ application-level methods to recoup these fees, such by including a small payment to themselves in the packet data. More information on Relayers can be found here

https://preview.redd.it/twjzlc8hiba31.png?width=1100&format=png&auto=webp&s=2e546142573b61af031e27dac83ddca675a4b693
A high-level overview of the process is that Zone 1 commits an outbound message on its blockchan about sending say 1 x Token A to Hub1 and puts 1 x Token A in escrow. Consensus is reached in Zone 1, and then it’s passed to the IBC module to create a packet which contains the reference to the committed block, source and destination channel/ connection and timeout details and is added to Zone 1’s outbound queue as proof.
All relayers (who run off-chain) are continuously monitoring the state of Zone 1 via the Zone 1 light client. A Relayer such as Relayer 1 is chosen and submits a proof to Hub1 that Zone 1.
Hub 1 then sends a receipt as proof that it has received the message from Zone 1, relayer1 sends it to Zone 1. Zone 1 then removes it from its outbound queue and sends proof via another receipt to Hub1. Hub1 verifies the proof and mints the token.

https://preview.redd.it/d4dclm3iiba31.png?width=770&format=png&auto=webp&s=9ca521efc8580800067e1c4e3f74c0ab8df30555
This video below explains the process in more detail as well as covers some of the other points i raise later in this article so worth a watch (time stamped from 22:24 to 32:25) and also here from 38:53 to 42:50
https://youtu.be/5h8DXul4lH0?t=1344

Whilst there is an option for UDP style transfer where a zone will send a message to a Hub and it doesn’t care whether it gets there or in any order etc, Token transfers are going to require the TCP style connections in IBC where there is a send, receipt and then another receipt as explained above. Each Send, receipt followed by another receipt is going to take at least 2 blocks and so using Cosmos Hub block times as an example with 6.88 second block times a transfer between one zone and hub could take a minimum of 41.28 seconds. You also then have to factor in the amount of other transactions going through those at that time and relevant gas price to see whether it is able to use 2 consecutive blocks or whether it may take more. This is also explained in this video “ILP Summit 2019 | Cosmos and Interledger | Sunny Aggarwal” (time stamped) from to 12:50 to 15:45

In Part Two we will look at potential issues with multi hop routing, token transfers across multiple routes and Peg Zones, whilst also looking at other interoperability solutions that would resolve some of these issues and compliment the cosmos ecosystem. Part Two can be found here
submitted by xSeq22x to CryptoCurrency [link] [comments]

General info and list of exchanges for yezcoin

Real World Problems Related to Blockchain There have been several studies that look at the problems that may cause the delay in the adoption of the blockchain technology in the real-world applications, particularly the cryptocurrencies. 1. A large portion of the public have a negative impression towards cryptocurrencies, and blockchain, because of the past illegal activities associated with them. 2. Some cryptocurrency companies and exchanges are not fully compliant with government regulations due to the lack of will to change the status quo. 3. The existing architectures are not optimally scalable, and therefore may fail to serve up to larger groups of users. 4. The implementations of blockchain technology at many existing exchanges suffer from the trades-off between speed and security. 5. Complicated and error-prone processes can result in the loss of funds and lead to unhappy customers. 6. Digital wallet technology puts the burden on users to memorize and safeguard their wallet keys. 7. Small and medium size cryptocurrency exchanges face a liquidity dilemma. Customers expect liquidity but the exchanges won’t have enough liquidity unless they have more customers. Yezcoin Platform Solutions With our full awareness of the problems, we commit to providing the solutions to them. Yezcoin Platform is our brainchild that we proudly introduce to the blockchain community. 1. Yezcoin Platform assures that proper “know-your-customer (KYC)” and “anti-money laundering (AML)” are implemented with the blockchain technology 100% compliant with all government regulations. 2. Yezcoin Platform’s exchange model is a hybrid of a speedy centralized and a securely decentralized models. Yezcoin Platform can achieve the balance between the strengths of both models.
20180720_1331.001
3 3. Our expertise in advanced mobile technology allows an efficient mobile blockchain implementation that will allow users to participate in Yezcoin Platform using mobile phones. 4. With a 2-factor authentication process plus biometrics authentication, in addition to screening for fraud and blacklisted sites, Yezcoin Platform can provide customers with peace-of-mind security. 5. We mitigate the risk of private key management with multi-signature signing technology. Yezcoin Platform customers can manage their private keys via their biometric data. 6. Our 24/7 customer services will ensure that our help is always a click away. 7. Yezcoin Platform is forming a Cryptocurrency Exchange Alliance where cryptocurrency exchanges will benefit from high liquidity and a larger pool of customers. The Yezcoin Platform To achieve all the solutions we promise, Yezcoin Platform, by Yezcoin, is developed using several state-of-the-art technologies exist today for the future. Yezcoin = Hybrid Exchange + KYC & AML + Biometrics ID + Smart AI + Mobile Blockchain Yezcoin Hybrid Exchange A centralized exchange is generally fast but less secured, while a decentralized exchange is secure with lower speed. There is room in the middle to balance speed and security by storing sensitive information on the chain while performing order matching off of the chain. This way Yezcoin will have the speed of centralized model and the world class security of a decentralized model. KYC & AML Know Your Customer (KYC) and Anti Money Laundering (AML) rules have been the focus of government regulators trying to combat illegal activities in the cryptocurrency ecosystem. Unfortunately, existing cryptocurrency companies inherited KYC & AML issues since the birth of Bitcoin. As of now, no blockchain companies are able to claim that they are fully compliant with KYC & AML. Yezcoin will be the first company that is 100% KYC & AML compliant. Biometrics ID Biometric information usage has been increasing. Most modern smartphones come with Biometrics login capabilities. Enabling Biometrics ID to unlock a digital wallet is the next logical step. Many users have lost access to their wallets due to the loss of private keys. Yezcoin is using its proprietary encrypted Biometrics ID management solution to allow customers to unlock their digital wallets and securely manage their Biometrics ID. Smart AI Each cryptocurrency exchange trade comes with at least two options when making a purchase: 1) purchase with other cryptocurrency and pay full price; 2) purchase with the exchange currency and get a discounted price. Not all cryptocurrencies can be traded from every
20180720_1331.001
4 exchange and some cryptocurrencies are only available on certain exchanges. There are many options and complicated steps involved in a cryptocurrency trading transaction. Among many options, there is an optimal path where the customer will pay the lowest fee for the same transaction. Yezcoin’s Smart AI will perform all complicated calculations and selections and only present the customer with the best deal for both buying and selling. Mobile Blockchain Mobile devices have become a part of modern life and are increasing in power day by day. Unfortunately, the requirements to run blockchain nodes are too demanding. Yezcoin is working with blockchain experts and mobile engineers to enable our blockchain solution to run on mobile devices. It is a challenging but vital next step that must be achieved if we want the world to adopt blockchain technology. It must work on mobile devices and Yezcoin is committed to making it happen. Yezcoin Scam Detector and International Sanctions Check The cryptocurrency market has grown tremendously since 2017. A vast amount of funding has been invested into cryptocurrency. Sadly, the high growth in the market has attracted fraud as well. Criminals will impersonate someone who is a cryptocurrency market influencer and pretend that they are running a campaign to give back to investors only after investors send them the requested cryptocurrency. Thousands of investors have become victims of these scams. Furthermore, with the ease of transferring money, funding of these illegal activities has been on the rise and the use of an International Sanctions List has become less effective. To address these issues, Yezcoin has developed features to verify every account whether it matches any published International sanctions information at the registration and also to alert users if the sending wallet address matches one of 3,000+ known scammer addresses. NEO and the Solution for Scalability Yezcoin is using NEO Blockchain to support our proprietary identity management solution because we believe that NEO is our best solution. There are a number of blockchain platforms offering different approaches. Among those, NEO stands out with high throughputs, a supportive community and scalable solutions. NEO provides a node program, Blockchain Explorer, SDK Development Kit, Smart Contract Compiler and IDE Plugin, decentralized applications. One of the highlights of NEO’s solution is the DBFT consensus algorithm. Consensus NEO’s consensus algorithm, Delegated Byzantine Fault Tolerance (DBFT), is an improved version of classic Byzantine Fault Tolerance for scalability.
EXCHANGE LIST
Binance
Huobi
Kucoin
Bibox
Qryptos
Satoexchange
BIGone
Bitrue
Bilaxy
Bit-Z
Linkcoin
SECURE WALLET
Ledgerwallet
Trezor
submitted by icoinformation to yezcoin [link] [comments]

Binance ¿El Mejor Exchangue? Byzantine General's Problem Tutorial 2 : Byzantines's General Problem Byzantine Attacks/Fault Tolerance In a Nutshell The Byzantine Generals Problem - An Intro To Blockchain ... The Byzantine Generals Problem and Blockchain Consensus ... Make Money Off Of The Bitcoin 'Carry Trade'  Binance Smartphone Coming  RBC Crypto Exchange Coming I’ve Changed My Mind on Binance!! BNB #1 Altcoin!? Bitcoin and Byzantine Generals  Programmer explains

Did the Byzantine Generals Problem really exist in the historical record, or is it just a thought experiment for fault tolerance? Is the Bitcoin network a middleman in the BGP? Is mining like a brute force attack? These questions are from the second and third sessions of MOOC 12, which took place on September 19th […] In 2008, Satoshi Nakamoto essentially solved the infamous computational issue called the “Byzantine generals’ problem” or the “Byzantine Fault.” Throughout the history of man, people used ledgers to record economic transactions and property ownership. A ledger is often referred to as the “principal book,” and entries can be recorded in stone, parchment, wood, metal, and […] In essence, the Byzantine generals’ problem is an allegory in the field of computer science, which tells a story of two generals (there can be more than two generals) planning to attack an enemy city. The generals tell both armies to attack from each side of the enemy’s castle, the east side and the west side. The issue at hand is a timing or synchronization problem coupled with trust ... Byzantine Fault Tolerance (BFT) In a few words, Byzantine fault tolerance (BFT) is the property of a system that is able to resist the class of failures derived from the Byzantine Generals’ Problem. This means that a BFT system is able to continue operating even if some of the nodes fail or act maliciously. Satoshi came up with a solution to the Byzantine Generals’ problem. It was the beginning of a revolution that will change the world in the next twelve years. Only a few people believed at first, the next few years were tumultuous but slowly it gained value and converted the hearts of few people at a time. Governments fought against it, banks said it was a scam, they said it facilitated ... Byzantine Generals’ Problem: Dealing With Dishonest Actors. However, we need to consider the possibility that if all Generals made a plan to attack the city and one General was lying, and “instead of attacking the city, that General or his or her army left,” Martinsson notes. He points out that this would “pose a problem to the army as ... Triple-Entry Bookkeeping: How Satoshi Nakamoto Solved the Byzantine Generals’ Problem In 2008, Satoshi Nakamoto essentially solved the infamous computational issue called the “Byzantine generals’ problem” or the “Byzantine Fault.” Throughout the history of man, people used ledgers to record economic transactions and property ownership. The Two Generals Problem presents us with a hypothetical scenario where two Byzantine generals, one being the superior to the other, are sitting on the opposite walls of an enemy city they are trying to conquer. Earn passive income with Quadency TRADING BOT. Connect Binance account and use Quadency bot for 6 MONTHS COMPLETELY FREE. Hurry up, this deal is not around for long! Each general’s ... Nigerian Bitcoin Exchange YellowCard Raises $1.5 Million. August 31, 2020. Save Binance Adds ETH/NGN Pair – Nigerians Can Directly Trade Ethereum Against the Naira . August 27, 2020. Save Nigerian Cryptocurrency Exchanges – Bundle and BuyCoins Africa Are Having A Great 2020. August 25, 2020. Save Binance P2P Adds MPESA in Kenya And 57 Other Payment Methods. August 21, 2020. Save Binance ... Binance Academy sheds light on how this fancily named TA method puts good use of several indicators. 7. Byzantine Fault Tolerance Explained. This is the story of how addressing a logic problem called the Byzantine Generals’ Problem has helped create the sophisticated technology behind Bitcoin and blockchain. 8. Stochastic RSI Explained.

[index] [4338] [20457] [4071] [21678] [19821] [17034] [13372] [11899] [7215] [1503]

Binance ¿El Mejor Exchangue?

The Byzantine Generals Problem and Blockchain Consensus Models A Deep Dive ... WARNING!! FIAT COLLAPSING EVEN FASTER!!! Leaked Data, BITCOIN Breaking Out - Programmer explains - Duration : 1:00 ... In this tutorial we will learn about the Byzantines's General Problem. The Byzantine Generals Problem and Blockchain Consensus Models ... Two Generals' Problem Explained - Duration: 8:25. Finematics 16,594 views. 8:25. Bitcoin Sidechains & SPV Proofs - Duration: 9:00 ... The Byzantine Generals Problem and Blockchain Consensus Models ... Mike Maloney S1 • E8 From Bitcoin To Hedera Hashgraph (Documentary) Hidden Secrets Of Money Episode 8 - Duration: 1:14:26 ... Chico Crypto has changed his heart regarding Binance? The exchange just acquired Coinmarketcap, and now controls crypto largest data aggregator!! Is 2020 the year Binance gets complete control ... To learn more about Blockchain, please visit the full district0x education portal here: https://education.district0x.io/ Learning about Blockchain, Bitcoin a... In this video, I cover the Two Generals Problem, The Byzantine Generals Problem, Byzantine Fault Tolerance, Proof of Work, Proof of Stake, and Delegated Byza... Make Money Off Of The Bitcoin 'Carry Trade' Binance Smartphone Coming RBC Crypto Exchange Coming In today's crypto news, crypto analyst Plan B reveals his Bitcoin Carry trade that will net you ... Binance proviene de las palabras binary y finance, es el exchange asiático más reciente y popular de los últimos meses, creado por Changpeng Zhao (CEO de Binance, fundador de BijieTech y ...

#